Product Cordial Labeling for Some New Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product Cordial Labeling for Some New Graphs

Received: December 16, 2010 Accepted: December 31, 2010 doi:10.5539/jmr.v3n2p206 Abstract In this paper we investigate product cordial labeling for some new graphs. We prove that the friendship graph, cycle with one chord (except when n is even and the chord joining the vertices at diameter distance), cycle with twin chords (except when n is even and one of the chord joining the vertices at dia...

متن کامل

Totally magic cordial labeling of some graphs

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

متن کامل

Prime Cordial Labeling of Some Graphs

In this paper we prove that the split graphs of 1,n K and are prime cordial graphs. We also show that the square graph of is a prime cordial graph while middle graph of is a prime cordial graph for . Further we prove that the wheel graph admits prime cordial labeling for . , n n B n  , n n B n P 8 4 n 

متن کامل

Some New Families of Total Vertex Product Cordial Labeling Of Graphs

I.Cahit introduced cordial graphs as a weaker version of graceful and harmonious graphs. The total product cordial labeling is a variant of cordial labeling. In this paper we introduce a vertex analogue product cordial labeling as a variant of total product cordial labeling and name it as total vertex product cordial labeling. Finally, we investigate total vertex product cordial labeling for ma...

متن کامل

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics Research

سال: 2011

ISSN: 1916-9809,1916-9795

DOI: 10.5539/jmr.v3n2p206